ON A PROBLEM OF THE THEORY
 OF DYNAMIC PROGRAMMING

(OB ODNOI ZADACHE TEORII DINAMICGESKOCO PROGRAMMIR OVANIIA)

PMM Vol.24, No.6, 1960, pp. 1002-1012
E. A. BARBASHIN
(Sverdlovsk)
(Received June 15, 1960)

Methods for the selection of the input parameters of linear systems are given. The object of these methods is to insure the transition of the system from the given initial state to a new nearby state.

1. Let us consider the n th-order linear differential equation

$$
\begin{equation*}
L(x)=x^{(n)}+a_{1}(t) x^{(n-1)}+\ldots+a_{n}(t) x=c_{1} u_{1}(t)+\ldots+c_{m} u_{m}(t) \tag{1.1}
\end{equation*}
$$

where $a_{1}(t), \ldots, a_{n}(t)$ are continuous functions of time for $t \geqslant 0$; $u_{1}(t), \ldots, u_{m}(t)$ are a given set of linearly independent functions; c_{1}, \ldots, c_{m} are constant parameters which can be chosen within certain limits.

Suppose that at $t=0$ we are given the set of numbers $x_{0}, x_{0}{ }^{\prime \prime}, \ldots$, $x_{0}{ }^{(n-1)}$ and suppose that $f(t)$ is a given function defined on $0 \leqslant t \leqslant T$, $0<T \leqslant \infty$. We state two problems:

1) The problem is to find a set of parameters c_{i} such that the solution $x(t)$ of Equation (1.1) satisfying the conditions

$$
\begin{equation*}
x(0)=x_{0}, \quad x^{\prime}(0)=x_{0}{ }^{\prime}, \ldots, x^{(n-1)}(0)=x_{0}{ }^{(n-1)} \tag{1.2}
\end{equation*}
$$

may also satisfy the condition

$$
\begin{equation*}
x\left(t_{0}\right)=f\left(t_{0}\right), \quad x^{\prime}\left(t_{0}\right)=f^{\prime}\left(t_{0}\right), \ldots x^{(n-1)}\left(t_{0}\right)=f^{(n-1)}\left(t_{0}\right) \tag{1.3}
\end{equation*}
$$

when $t=t_{0}>0$.
2) The second problem is to find a set of parameters c_{i} such that the solution $x(t)$ of Equation (1.1) which satisfies (1.3) may approximate the given function $f(t)$ on the set $t_{0} \leqslant t \leqslant T$.

If one solves these problems simultaneously, one is looking for piecewise constant functions $c_{i}(t)$ which change their values when $t=t_{0}$ and which guarantee the transition of the system at the time t_{0} into a new state with an ultimate approximate realization of the given process $f(t)$. During the time $0 \leqslant t \leqslant t_{0}$ a transient process is taking place which begins at t_{0} with a new set of parameters c_{i}. This new set of parameters must approximate as much as possible the solution $x(t)$ of Equation (1.1) to the given function $f(t)$.

In solving the first problem we shall endeavor to find the smallest t_{0} for which the given boundary-value problem has a solution. While solving the first and second problems we shall remember also that in applied problems one cannot select the parameters c_{i} arbitrarily, for they are restricted by the structural characteristics of the syster under consideration. These circumstances put the first problem into the class of problems on optimum control with respect to speed. Krasovskii [1] was the first to call attention to the possibility of applying Krein's L-problem theory to the given class of problems. This approach is used in the present paper. We note that the search for the optimal control in the form of a trigonometric polynomial was carried out by Krasovskii in [2].

The second problem is a problem in the theory of approximations. It has been considered, in particular, by Kulinovskii [3,4]. In the present article a different method of solution is used from that given in the indicated works. Following the ideas expressed in $[5,6]$, one can avoid computational difficulties by replacing the problem on best approximation of the function $f(t)$ by the problem of finding. such parameters c_{i} for which the function $f(t)$ satisfies Equation (1.1) with the least error.

Let $w_{1}(t, \tau), \ldots, w_{n}(t, \tau)$ be a linearly independent system of solutions of Equation (1.1) satisfying the conditions

$$
\begin{equation*}
\left.\frac{d^{k} w_{i}(t, \tau)}{d t^{k}}\right|_{t=\tau}=\delta_{i, k+1} \quad\left(\delta_{i, k+1} \text { is Kronecker's symbol }\right) \tag{1.4}
\end{equation*}
$$

The solution of Equation (1.1) which satisfies Equation (1.2) can be expressed in the form [7]

Let

$$
\begin{equation*}
x(t)=\sum_{k=1}^{n} w_{k}(t, 0) x_{0}^{(k-1)}+\sum_{i=1}^{m} c_{i} \int_{0}^{t} w_{n}(t, \tau) u_{i}(\tau) d \tau \tag{1.5}
\end{equation*}
$$

正

$$
\begin{equation*}
y_{i}(t)=\int_{0}^{t} w_{n}(t, \tau) u_{i}(\tau) d \tau \quad(i=1, \ldots, m) \tag{1.6}
\end{equation*}
$$

It is not difficult to select the functions $u_{i}(\tau)$ in such a way that the $m+n$-functions $w_{1}(t, 0), \ldots, w_{n}(t, 0), y_{1}(t), \ldots, y_{m}(t)$ be linearly independent.

For the purpose of justifying our formulation of the problem, we digress from our main aim, and first attempt to select the parameters c_{i} and the initial values $x_{0}, x_{0}{ }^{\prime}, \ldots, x_{0}{ }^{(n-1)}$ in such a way that the solution of Equation (1.1)
where

$$
\begin{equation*}
x(t)=\sum_{k=1}^{n} w_{k}(t, 0) x_{0}^{(k-1)}+\sum_{i=1}^{m} c_{i} y_{i}(t)=\sum_{i=1}^{m+n} b_{i} z_{i}(t) \tag{1.7}
\end{equation*}
$$

$$
\begin{array}{lll}
a_{i}=x_{0}^{(i-1)}, & z_{i}(t)=w_{i}(t, 0) \quad \text { when } 1 \leqslant i \leqslant n \\
a_{i}=c_{i-n}, & z_{i}(t)=y_{i-n}(t) \quad \text { when } n<i \leqslant m
\end{array}
$$

will be the best approximation to the given function $f(t)$ on the interval $[0, T]$.

When one speaks of the best approximation in the space L_{2}, that is, when one requires that the quantity

$$
H^{2}=\int_{0}^{T}(x(t)-f(t))^{2} d t
$$

be a minimum, then it follows from the theory of mean-square approximations [4,8$]$ that the initial values and parameters can be found by means of the system

$$
\begin{equation*}
\sum_{k=1}^{m+n}\left(z_{i}, z_{k}\right) b_{k}=\left(z_{i}, f\right) \quad(i=1, \ldots, m+n) \tag{1.8}
\end{equation*}
$$

Here

$$
\left(z_{i}, z_{k}\right)=\int_{0}^{T} z_{i}(t) z_{k}(t) d t, \quad\left(z_{i}, f\right)=\int_{0}^{T} z_{i}(t) f(t) d t
$$

For the indicated choice of the b_{k} we will have

$$
H^{2}=\frac{\Gamma\left(z_{1}, \ldots, z_{n+m}, f\right)}{\Gamma\left(z_{1}, \ldots, z_{n+m}\right)}
$$

where the numerator and denominator are the Grammian determinants of the corresponding systems of functions.

The problem becomes considerably more complicated when one looks for the best approximation in the space G, i.e. if one requires a minimum
for the quantity

$$
h=\max |x(t)-f(t)| \quad(0 \leqslant t \leqslant T)
$$

The theory of uniform or of Chebyshev approximations does not yield any methods which are as simple as the above-described procedure for finding the b_{k}.

Let us denote by $x_{1}(t)$ a solution of Equation (1.1) which satisfies the conditions

$$
x_{0}^{(k)}\left(t_{0}\right)=f^{(k)}\left(t_{0}\right) \quad(k=0,1, \ldots, n-1)
$$

We have, obviously

$$
|x(t)-f(t)| \leqslant\left|x(t)-x_{1}(t)\right|+\mid x_{1}(t)-f(t)
$$

Since

$$
x(t)-x_{1}(t)=\sum_{k=1}^{n} w_{k}\left(t, t_{0}\right)\left(x^{(k-1)}\left(t_{0}\right)-f^{(k-1)}\left(t_{0}\right)\right)
$$

the solution of the problem can be carried out in two stages. At the first stage we shall attempt to eliminate the difference between the actual and the desired initial conditions of the system (i.e. we accomplish the transient process). At the second stage, we select new values of the parameters; we attempt to diminish the difference between the actual $x(t)$ and the desired $f(t)$ processes. The indicated stages correspond exactly to the above-stated first and second problems.

We call attention to the fact that the control $c_{1} u_{1}(t)+\ldots+c_{m} u_{m}(t)$ for which we are searching need not be expressible as an explicit function in t. Indeed, the function $c_{1} u_{1}+\ldots+c_{m} u_{m}(t)$ obviously satisfies some linear equation $L_{1}(u)=0$ of order m. The problem on the determination of the parameters c_{i} can be formulated in this case as the problem on the finding of the initial values for the solution of the indicated equation.
2. Let us proceed with the solution of the first problem without putting, for the time being, any restrictions on c_{i}. Making the change of variables $z=x-f(t)$ in Equation (1.1), we obtain
$L(z)=z^{(n)}+a_{1}(t) z^{(n-1)}+\ldots+a_{n}(t) z=c_{1} u_{1}(t)+\cdots+c_{m} u_{m}(t)-L(f(t))$

Taking into consideration conditions (1.2) and Formulas (1.5) and (1.6), one can write the solution of Equation (2.1) in the form

$$
\begin{equation*}
z(t)=\sum_{i=1}^{m} c_{i} y_{i}(t)-r(t) \quad\left(r(t)=f(t)-\sum_{k=1}^{n} w_{k}(t, 0) x_{0}^{(k-1)}\right) \tag{2.2}
\end{equation*}
$$

When $t=0$, this equation satisfies the condition

$$
\begin{equation*}
{ }^{(k)}(0)=x_{0}{ }^{(k)}-f^{(k)}(0) \quad(k=0,1, \ldots, n-1) \tag{2.3}
\end{equation*}
$$

Differentiating (2.2) n-1 times, we obtain

$$
\begin{equation*}
z^{(k)}(t)=\sum_{i=1}^{m} c_{i} y_{i}^{(k)}(t)-r^{(k)}(t) \quad(k=0,1, \ldots,(n-1)) \tag{2.4}
\end{equation*}
$$

The problem consists of selecting such values of the parameters c_{i} that for $t=t_{0}>0$ the equation

$$
\begin{equation*}
\sum_{i=1}^{m} c_{i} y_{i}^{(k)}\left(t_{0}\right)=r^{(k)}\left(t_{0}\right) \quad(k=0,1, \ldots,(n-1)) \tag{2.5}
\end{equation*}
$$

may have a solution.
Since the system (2.5) is inconsistent, we must find a solution by the method of least squares [6, p. 449], i.e. we must look for such a set of parameters c_{i} that the quadratic form

$$
\begin{equation*}
F=\sum_{k=0}^{n-1}\left(\sum_{i=1}^{m} c_{i} y_{i}^{(k)}-r^{(k)}\right)^{2} \tag{2.6}
\end{equation*}
$$

in these parameters may have a minimum (here and in the sequel we omit the argument t_{0}).

Next, let us consider the vectors

$$
Y_{i}\left(y_{i}, y_{i}^{\prime}, \ldots, y_{i}^{(n-1)}\right) \quad(i=1, \ldots, m)
$$

Fig. 1.

Since they are n-dimensional vectors, there exist among them p linearly independent vectors (here $p \leqslant n, p \leqslant m$). We shall denote these vectors by Y_{1}, \ldots, Y_{p}. By Q we shall denote the hyperplane generated by the given vectors. Obviously, all remaining vectors Y_{i} lie in this hyperplane and the quadratic form F is the square of the distance from the point A, whose radius vector is equal to $R\left(r, r^{\prime} ; \ldots, r^{(n-1)}\right.$, to the point B with radius vector $S=c_{1} Y_{1}+\ldots+c_{m} Y_{m}$ lying in the plane Q (see Fig, 1). But then F must be a minimum if the vector S is the projection of the vector R, or, which is the same thing, the point B will
be the projection of the point A. Since the system of vectors Y_{1}, \ldots, Y_{p} is a basis for the subspace Q, we have

$$
S=c_{1} Y_{1}+\ldots+c_{p} Y_{p}
$$

In accordance with [10, p. 204], the parameters $c_{i}(1 \leqslant i \leqslant p)$ are here determined by the system

$$
\begin{equation*}
\left(Y_{i}, Y_{1}\right) c_{1}+\ldots+\left(Y_{i} Y_{p}\right) c_{p}=\left(Y_{i}, R\right) \quad\langle i=1, \ldots, p\rangle \tag{2.7}
\end{equation*}
$$

Here, $\left(Y_{i}, Y_{k}\right)$ stands for the inner product of the vectors Y_{i} and Y_{k}. Thus, the c_{i} with $i>p$ do not enter into the solution and they can be set equal to zero.

The minimum H^{2} of the quadratic form F is equal in the given case to

$$
\begin{equation*}
H^{2}=\frac{\Gamma\left(Y_{1}, \ldots, Y_{p}, R\right)}{\Gamma\left(Y_{1}, \ldots, Y_{p}\right)} \tag{2.8}
\end{equation*}
$$

where the numerator and denominator are the Grammian determinants of the corresponding systems of vectors. Finally, we have the important relation

$$
S=\sum_{i=1}^{p} c_{i} Y_{i}=-\frac{1}{\Gamma\left(Y_{1}, \ldots, Y_{p}\right)}\left|\begin{array}{cccc}
\left(Y_{1}, Y_{1}\right) \ldots\left(Y_{1}, Y_{p}\right) & \cdot Y_{1} \tag{2.9}\\
\ldots, \ldots . Y_{1} \\
\left(Y_{p}, Y_{1}\right) \ldots .\left(Y_{p}, Y_{p}\right) & Y_{p} \\
\left(R, Y_{1}\right) \ldots\left(R, Y_{p}\right) & 0
\end{array}\right|
$$

From Formulas (2.8) it follows that $H^{2}=0$ if $p=n$ and, hence $m \geqslant n$. In this case the number of the linearly independent vectors Y_{i} is a maximum, and the vectors generate the entire n-dimensional space in which the vector R lies.

A system of functions $u_{i}(t)$ is said to be essentially linearly independent on some set if the set of zeros of the function

$$
c_{1} u_{1}(t)+\ldots+c_{m} u_{m}(t) \quad \text { when } c_{1}^{2}+\ldots+c_{m}^{2} \neq 0
$$

is nowhere dense in this set.
We prove the next lemma for later use.
Lemma. If the system of functions $u_{i}(t)(i=1, \ldots, m ; m \geqslant n)$ is essentially linearly independent on the interval $[0, T]$, then the set of points t_{0} for which the rank of the matrix

$$
\left.\| \begin{array}{cccc}
y_{1} & y_{1}^{\prime} & \ldots & y_{1}^{(n-1)} \tag{2.10}\\
y_{2} & y_{2}^{\prime} & \cdots & y_{2}^{(n-1)} \\
\cdots & \cdots & \cdots & \cdot \\
y_{m} & y_{m}^{\prime} & \cdots & y_{m}^{(n-1)}
\end{array} \right\rvert\,
$$

is less than n is a closed nowhere-dense set.
Indeed, let us assume that on the interval $t_{1} \leqslant t \leqslant t_{2}$ the rank of the matrix (2.10) is less than n. We construct the differential equation

$$
\left.\left|\begin{array}{llll}
y_{1} & y_{1}^{\prime} & \cdots & y_{1}^{(n-1)} \tag{2.11}\\
\cdots & \cdots & \cdots & \cdots
\end{array}\right|=y_{n}^{(n-1 \lambda} \right\rvert\,, \sum_{k=0}^{n-1} b_{k}(t) y^{(k)}=0
$$

It is obvious that on the indicated interval all the m-functions $y_{i}(t)$ satisfy this ($n-1$)-order differential equation with continuous coefficients $b_{k}(t)$. But since $m \geqslant n$, the function $y_{i}(t)$ must be linearly dependent. This means that there exist constants a_{i} such that

$$
\alpha_{1}^{2}+\ldots+\alpha_{m}^{2} \neq 0, \quad \alpha_{1} y_{1}(t)+\ldots+\alpha_{m} y_{m}(t) \equiv 0
$$

on the given interval. Since $L\left(y_{i}(t)\right)=u_{i}(t)$ (L is the operator defined by Equation (1.1)), we have $a_{1} u_{1}(t)+\ldots+\alpha_{m} u_{m}(t)=0$ everywhere on $\left[t_{1}, t_{2}\right]$.

The closure of the set under consideration follows from the fact that the complement of the set of points where the rank of the matrix (2.10) is equal to n is, obviously, an open set.

We shall call the points t_{0} where the rank of the matrix (2.10) is less than n critical points; at these points one cannot eliminate the error H by increasing the number of functions $u_{i}(t)$ to n (or higher) even in the absence of any restrictions on the parameters c_{i}. We note that in concrete examples the critical points are distributed sparsely. From simple considerations it follows, for example, that if the functions $u_{i}(t)$ and the coefficients of Equation (1.1) are analytic, then the critical points are isolated. At the noncritical points, with $m=n$, we obtain the exact solution of the first problem by selecting the parameters c_{i} in accordance with (2.7).
3. Let us now consider the first problem when the parameters c_{i} are subjected to restrictions. We shall assume that the parameters c_{i} are connected by the inequality

$$
\begin{equation*}
\rho\left(c_{1}, \ldots, c_{m}\right) \leqslant M \tag{3.1}
\end{equation*}
$$

The points of the hyperplane Q with radius vectors of the form $S=c_{1} Y_{1}+\ldots+c_{m} Y_{m}$, where the c_{i} are connected by condition (3.1), fill some region G. Two cases can arise. In the first case, the minimum of the quadratic form F is attained by the vector S with its end B inside the region G. In this case the system (2.7) yields the complete solution of the problem.

In the second case, the minimum form F is attained on the boundary (Fig. 1) of the region G; it is obviously equal to the square of the distance from the point A to the point C on the boundary of the region G and nearest to A. Since $A C^{2}=C B^{2}+A B^{2}$, and since the component $A B$ does not depend on the size and shape of the region G, the point C is also the nearest point of the region G from the point B. Thus, the error $A C$ with which the problem is solved has, seemingly, two components $C B$ and $A B$. Selecting a noncritical value t_{0} and taking $m=n$, one can eliminate the component $A B$. Hence, one needs only to find ways for decreasing the length of the component $C B$.

This last task represents the problem on a conditional extremum; but when $m \geqslant n$ for the noncritical value t_{0}, one cannot deal directly with the extremum of the form F, for in this case the system of equations is a consistent set of simultaneous equations. Here, one may make use of Krein's [11] method.

Suppose $m \geqslant n$, and t_{0} is a noncritical value. We shall consider the vector space R_{n} generated by the m-dimensional vectors $Y^{k}\left(y_{1}{ }^{(k)}, \ldots\right.$, $\left.y_{m}{ }^{(k)}\right)(k=0, n, \ldots, n-1)$. Since t_{0} is noncritical, the vectors Y^{k} are linearly independent, and the dimensionality of the space R_{n} is n. Alongside the space R_{n} we consider the space E_{n} of the vectors $C\left(c_{1}, \ldots, c_{m}\right)$. Suppose that in this space there is given a norm $\rho(C)=\rho\left(c_{1}, \ldots, c_{m}\right)$, i.e. a function satisfying the conditions
$\bar{\rho}(C)>0, \quad$ if $C \neq 0 ; \quad \rho(\alpha C)=\alpha \rho(C), \quad \rho\left(C_{1}+C_{2}\right) \leqslant \rho\left(C_{1}\right)+\rho\left(C_{2}\right)$
The space E_{m} can be considered [12, p. 113] as a space of linear functionals ϕ acting in R according to the rule

$$
\varphi(X)=\sum_{i=1}^{m i} c_{i} x_{i}=(C, X) \quad\left(X \subset R_{n}\right)
$$

Hence, in R_{n} as well as in the space R_{m} which is an adjoint to the E_{m} space, the norm $\|X\|$ is defined by the rule

$$
\|X\|=\max (C, X) \text { under the condition } p(C)=1
$$

The system (2.5) can now be represented in the form

$$
\begin{equation*}
\left(C, Y^{k}\right)=r^{(k)} \quad(k=0,1, \ldots, n-1) \tag{3.3}
\end{equation*}
$$

Let us determine the function $\lambda\left(t_{0}, m\right)$ by means of the conditions

$$
\begin{equation*}
\frac{1}{\lambda\left(t_{0}, m\right)}=\min \left\|\sum_{k=0}^{n-1} \gamma_{k} Y^{k}\right\| \quad \text { when } \sum_{k=0}^{n-1} \gamma_{k} r^{(k)}=1 \tag{3.4}
\end{equation*}
$$

From the basic result of [11] it follows that the system (3.3) has a solution $C\left(c_{1}, \ldots, c_{m}\right)$ satisfying the condition $\rho\left(c_{1}, \ldots, c_{m}\right) \leqslant M$ if, and only if, $\lambda\left(t_{0}, m\right) \leqslant M$. From the same work [11, p. 177] it also follows that the vector $\gamma_{0} Y^{0}+\gamma_{1} Y^{1}+\ldots+\gamma_{n-1} Y^{n-1}$ will be a minimizing vector of the problem (3.4) if, and only if, the vector $C\left(c_{1}, \ldots, c_{m}\right)$ satisfies the system (3.3) and also the conditions

$$
\begin{equation*}
\left|\sum_{i=1}^{m} c_{i} \sum_{k=0}^{n-1} \gamma_{k} y_{i}^{(k)}\right|=\lambda\left(t_{0}, m\right)\left\|\sum_{k=0}^{n-1} \gamma_{k} Y^{k}\right\|, \quad \lambda\left(t_{0}, m\right)=p\left(c_{1}, \ldots, c_{m}\right) \tag{3.5}
\end{equation*}
$$

From these results it follows first of all that the function $\lambda\left(t_{0}, m\right)$ is a continuous function t_{0} on the set of noncritical points.

However, in contrast with the work of Kirillova [13], one may not assert that $\lambda\left(t_{0}, m\right)$ is a monotone function.

Let us show that the function $\lambda\left(t_{0}, m\right)$ is a nonincreasing function m. Indeed, suppose the minimizing elements of the problem (3.4) are

$$
\gamma_{0}{ }^{\circ} Y_{0}^{0}\left(m_{0}\right)+\Upsilon_{1}^{0} Y^{\mathbf{1}}\left(m_{0}\right)+\ldots+\gamma_{n-1}^{\circ} Y^{n-1}\left(m_{0}\right) \text { when } m=m_{0}
$$

and

$$
\begin{equation*}
\Upsilon_{0}^{\prime} Y^{0}\left(m_{1}\right)+\Upsilon_{1}^{\prime} Y^{1}\left(m_{1}\right)+\ldots+\Upsilon_{n-1}^{\prime} Y^{n-1}\left(m_{1}\right) \text { when } m=m_{1}>m_{0} \tag{3.6}
\end{equation*}
$$

Obviously, we have

$$
\begin{align*}
& \left\|\gamma_{0} Y^{0}\left(m_{0}\right)+\Upsilon_{1}^{\prime} Y^{1}\left(m_{0}\right)+\ldots+\gamma_{n-1}^{\prime} Y^{n-1}\left(m_{0}\right)\right\| \geqslant \\
& \geqslant\left\|\gamma_{0}^{\circ} Y^{0}\left(m_{0}\right)+\Upsilon_{1}^{\circ} Y^{1}\left(m_{0}\right)+\ldots+\Upsilon_{n-1}^{\circ} Y^{n-1}\left(m_{0}\right)\right\| \tag{3.7}
\end{align*}
$$

But since the vector $\gamma_{0}^{\prime} Y^{0}\left(m_{0}\right)+\gamma_{1} Y^{\prime}\left(m_{0}\right)+\ldots+\gamma_{n-1} Y^{n-1}\left(m_{0}\right)$ is the projection of the vector $\gamma_{0}^{\prime} Y^{0}\left(m_{1}\right)+\gamma_{1}^{\prime} Y^{\prime}\left(m_{1}\right)+\ldots+\gamma_{n-1} Y^{n-1}\left(m_{1}\right)$ we have

$$
\begin{align*}
& \left\|\gamma_{0}{ }^{\prime} Y^{0}\left(m_{1}\right)+\gamma_{1}{ }^{\prime} Y^{1}\left(m_{1}\right)+\ldots+\gamma_{n-1}^{\prime} Y^{n-1}\left(m_{1}\right)\right\| \geqslant \\
& \geqslant\left\|\gamma_{0}^{0} Y^{0}\left(m_{0}\right)+\gamma_{1}{ }^{\circ} Y^{1}\left(m_{0}\right)+\ldots+\gamma_{n-1}^{0} Y^{n-1}\left(m_{0}\right)\right\| \tag{3.8}
\end{align*}
$$

From relations (3.4) and the inequalities (3.7) and (3.8) we deduce that

$$
\lambda\left(t_{0}, m_{0}\right) \geqslant \lambda\left(t_{0}, m_{1}\right)
$$

which proves our assertion.
If the number t_{0} is a critical number, then the vectors $Y^{k}, k=0,1$, $\ldots,(n=1)$ will be linearly dependent. In this case it follows from (3.4) that $\lambda\left(t_{0}, m\right)=\infty$. Hence, the function $\lambda(t, m)$ will be a continuous function on the set of points where $\lambda(t, m) \leqslant M$. It follows from this that the equation $\lambda(t, m)=M$ has a smallest root t_{0} which is not a critical number. This number t_{0} gives us the optimum noncritical time of the transient process. We call attention to the fact that $t_{0} \neq 0$, for the number 0 is always a critical value. With the equation $\lambda(t, m)=M$ one can also determine the minimum number m of the control parameters c_{i} for which there exists a solution of our problem.
4. Let us consider some examples of concrete metrics in the space E_{m}. We consider first the Euclidean metric, i.e. we set

$$
\rho\left(c_{1}, \ldots, c_{m}\right)=\sqrt{c_{1}^{2}+\ldots+c_{m}^{2}}
$$

In the adjoint space R_{m} the norm of the vector $X\left(x_{1}, \ldots, x_{m}\right)$ is defined by an analogous formula $\|X\|=\sqrt{ }\left(x_{1}{ }^{2}+\cdots+x_{m}{ }^{2}\right)$.

By means of (3.4) we find first $\lambda\left(t_{0}, m\right)$ from the relation

$$
\begin{equation*}
\frac{1}{\lambda\left(t_{0}, m\right)}=\min \left[\sum_{i=1}^{m}\left(\sum_{k=0}^{n-1} \Upsilon_{k} y_{i}^{(k)}\left(t_{0}\right)\right)^{2}\right]^{1 / 2} \quad \text { when } \sum_{k=0}^{n-1} \Upsilon_{k} r^{(k)}\left(t_{0}\right)=1 \tag{4.1}
\end{equation*}
$$

After that, one must find the smallest root t_{0} of the equation $\lambda\left(t_{0}, m\right)=M$, and then the corresponding values $\gamma_{k}, k=0,1, \ldots,(n-1)$ which yield the minimum (4.1). Since in the given case

$$
\lambda\left(t_{0}, m\right)=\sqrt{c_{1}^{2}+\ldots+c_{m}^{2}}
$$

it follows from (3.4) that

$$
\mid \sum_{i=1}^{m} c_{i} \sum_{k=0}^{n-1} \gamma_{k} y_{i^{(k)}}{ }^{(k)}=\left(\sum_{i=1}^{m} c_{i}^{2}\right)\left[\sum_{i=1}^{m}\left(\sum_{k=0}^{n-1} \gamma_{k} y_{i}^{(k)}\right)^{2}\right]^{1 / 2}
$$

But the last equation will be valid when the numbers c_{i} are proprotional to the numbers $\gamma_{0} y_{i}{ }^{0}+\ldots+\gamma_{n-1} y_{i}{ }^{(n-1)}$. Finally, we obtain

$$
\begin{equation*}
c_{i}=\lambda^{2}\left(t_{0}, m\right)\left(\gamma_{0} y_{i}^{(0)}+\Upsilon_{1} y_{2}^{(1)}+\ldots+\Upsilon_{n-1} y_{j}{ }^{(n-1)}\right) \tag{4.2}
\end{equation*}
$$

Next, let us consider the case when the norm $\rho\left(c_{1}, \ldots, c_{m}\right)$ is defined by the formula

$$
\rho\left(c_{1}, \ldots, c_{m}\right)=\max _{1 \leqslant i \leqslant m}\left|c_{i}\right|
$$

In this case there is induced in R_{m} a norm $X\left(x_{1}, \ldots, x_{m}\right)$ given by the formula

$$
\|X\|=\left|x_{1}\right|+\ldots+\left|x_{m}\right|
$$

We determine the function $\lambda\left(t_{0}, m\right)$ and the minimizing vector $\gamma_{0} r^{0}+$ $\gamma_{1} Y^{1}+\cdots+\gamma_{n-1} Y^{n-1}$ by means of the relations

$$
\frac{1}{\lambda\left(t_{0}, m\right)}=\min \sum_{i=1}^{m}\left|\sum_{k=0}^{n-1} \Upsilon_{k} y_{i}^{(k)}\right|, \quad \sum_{k=0}^{n-1} \Upsilon_{k} r^{(k)}=1
$$

From (3.4) it follows that the minimizing vector must satisfy the condition

$$
\left|\sum_{i=1}^{m} c_{i} \sum_{k=0}^{n-1} \tau_{k} y_{i}^{(k)}\right|=\max _{1 \leqslant i \leqslant m}\left|c_{i}\right| \sum_{i=1}^{m}\left|\sum_{k=0}^{n-1} \gamma_{k} y_{i}^{(k)}\right|
$$

From this it follows that

$$
c_{i}=\lambda\left(t_{0}, m\right) \operatorname{sign} \sum_{k=0}^{n-1} \gamma_{k} y_{i}^{(i)} \quad(i=1, \ldots, m)
$$

Let us consider an example. Let the following equation be given:

$$
\begin{equation*}
\ddot{x}=c_{1} \sin t+c_{2} \cos t+c_{3} \sin 2 t+c_{4} \cos 2 t \tag{4.3}
\end{equation*}
$$

It is required to transfer the point $x=0, x^{\prime}=0$ on the straight line $x=1$ into the point $x=1, x^{\prime}=0$ under the restriction that $c_{1}{ }^{2}+c_{2}{ }^{2}+c_{3}{ }^{2}+c_{4}{ }^{2} \leqslant 1$.

This means that in the given problem $f(t)=1, M=1$. We obviously have

$$
w_{1}(t, \tau)=1, \quad w_{1}^{\prime}(t, \tau)=0, \quad w_{0}(t, \tau)=t-\tau, \quad w_{2}^{\prime}(t, \tau)=1
$$

We also have

$$
\begin{array}{llll}
y_{1}=-\sin t, & y_{2}=-1-\cos t_{2} & y_{3}=-\frac{1}{4} \sin 2 t, & y_{4}=\frac{1}{4}(1-\cos 2 t) \\
y_{1}^{\prime}=-\cos t, & y_{2}^{\prime}=\sin t, & y_{3}^{\prime}=-\frac{1}{2} \cos 2 t, & y_{4}^{\prime}=\frac{1}{2} \sin 2 t
\end{array}
$$

It is easily seen that the critical values of t correspond to the points $t=2 k \pi$. The system (2.5) has the following form in this case:

$$
\begin{gathered}
-c_{1} \sin t+c_{2}(1-\cos t)-\frac{1}{4} c_{3} \sin 2 t+\frac{1}{4} c_{4}(1-\cos 2 t)=1 \\
-c_{1} \cos t+c_{2} \sin t-\frac{1}{2} c_{3} \cos 2 t+\frac{1}{2} c_{4} \sin 2 t=0
\end{gathered}
$$

Since $\left.\rho\left(c_{1}, \ldots, c_{4}\right)=\sqrt{\left(c_{1}\right.}{ }^{2}+c_{2}{ }^{2}+c_{3}{ }^{2}+c_{4}{ }^{2}\right), \lambda(t, 4)=\lambda(t)$ is given by the relation

$$
\begin{gathered}
\frac{1}{\lambda^{2}(t)}=\min \left\{\left(\gamma_{1} \sin t+\gamma_{2} \cos t\right)^{2}+\left(\gamma_{1}(1-\cos t)+\gamma_{2} \sin t\right)^{2}+\right. \\
\left.+\left(\frac{1}{4} \gamma_{1} \sin 2 t+\frac{1}{2} \gamma_{2} \cos 2 t\right)^{2}+\left[\frac{1}{4} \gamma_{1}(1-\cos 2 t)+\frac{1}{2} \gamma_{2} \sin 2 t\right]^{2}\right\}
\end{gathered}
$$

under the condition that $\gamma_{1}=1$. It is not difficult to calculate that $y_{2}=-(8 \sin t+\sin 2 t) / 10$ and

$$
\frac{1}{\lambda^{2}(t)}=2-2 \cos t+1 / 8(1-\cos 2 t)-1 / 8 a(8 \sin t+\sin 2 t)^{2}=\Phi(t)
$$

In order to have attainability it is necessary that $\lambda^{2}(t) \leqslant 1$, or $\Phi(t) \geqslant 1$. This condition is fulfilled, for example, when $t=\pi / 2$. The shortest time for the [transient] transfer process is found from the equation $\Phi(t)=1$, which we shall not solve here. Knowing y_{1}, γ_{2} and $\lambda(t)$ we can easily find c_{i} by Formula (4.2).
5. Let us proceed to the solution of the second problem. Taking into account the transformation $z=x-f(t)$, introduced in Section 2, and Equation (2.1), let us formulate the second problem in the following way: the problem is to find such parameters c_{i} that the solution $z(t)$ of Equation (2.1) which satisfies the conditions $z^{k}\left(t_{0}\right)=0(k=0,1, \ldots$, $n-1$) may approximate $z=0$.

How the approximation is to be carried out in the L_{2} space, i.e. on the basis of mean-square deviations, was shown in Section 1. Here, following the ideas of [5,6], we shall try to find ways of selecting the parameters c_{i} which will diminish the maximum deviation of $z(t)$ from zero. From (2.1) we obtain, in analogy with (1.5)

$$
\begin{equation*}
z(t)=\int_{i_{0}}^{t} w_{n}(t, \tau)\left(\sum_{i=1}^{m} c_{i} u_{i}(t)-\varphi(\tau)\right) d \tau \quad(L(f(\tau))=\varphi(\tau)) \tag{5.1}
\end{equation*}
$$

Making use of the Buniakov-Schwarz inequality we obtain for $t_{0} \leqslant t \leqslant T$

$$
\begin{equation*}
|z(t)| \leqslant N\left(\int_{i_{0}}^{T}\left(\sum_{i=1}^{m} c_{i} u_{i}(\tau)-\varphi(\tau)\right)^{2} d \tau\right)^{1 / 2} \tag{5.2}
\end{equation*}
$$

Here

$$
N=\max \left(\int_{i_{0}}^{t} w_{n}^{2}(t, \tau) d \tau\right)^{1 / 2} \quad\left(t_{0} \leqslant t \leqslant T\right)
$$

In the case when Equation (1.1) is an equation with constant coefficients we find that in accordance with [6]

$$
N=\left(\int_{i_{0}}^{T} w_{n}^{2}(T, \tau) d \tau\right)^{1 / 2}
$$

We select the parameters c_{i} so that the integral

$$
H^{2}=\int_{t_{0}}^{T}\left(\sum_{i=1}^{m} c_{i} u_{i}(\tau)-\varphi(\tau)\right)^{2} d \tau
$$

will have, for a given m, the minimum value. In other words, we must find the best mean-square approximation of the function $\phi(t)$. We have already solved a similar problem in Section 1, and know that, for example, the c_{i} must be found from the system of equations

$$
\begin{equation*}
\sum_{i=1}^{m}\left(u_{i}, u_{k}\right) c_{k}=\left(u_{i}, \varphi\right) \quad(i=1, \ldots, m) \tag{5.3}
\end{equation*}
$$

If the system of functions $u_{i}(t), i=1,2, \ldots$, is a complete system, then by taking m sufficiently large, one can make H^{2} less than any given positive number.

We note now that the proposed method of approximation will be most effective over large intervals of time if the quantity N in (5.2) is bounded as a function of T. This condition holds, for example, when $w_{n}(t, \tau)$ satisfies the condition

$$
\left|w_{n}(t, \tau)\right| \leqslant B e^{-\alpha(t-\tau)} \quad(\alpha>0, B>0)
$$

which holds, in particular, in the case when the zero solution of the equation $L(z)=0$ is stable according to the exponential law [14, p. 310].

Next, we shall consider the case when all the coefficients c_{i} are bounded by the inequality

$$
\begin{equation*}
\rho\left(c_{1}, \ldots, c_{m}\right) \leqslant M \tag{5.4}
\end{equation*}
$$

This gives rise to the problem of finding the best mean-square approximation of the function $\phi(t)$ under certain restrictions on the coefficients of the polynomial $c_{1} u_{1}(t)+\cdots+c_{m} u_{m}(t)$. If the coefficients c_{i} found by means of (5.3) do not satisfy condition (5.4), then the more natural method of finding the required set of coefficients consists of solving a problem of a conditional extremum. In this case, Lagrange's method leads to the system

$$
\begin{equation*}
\sum_{h=1}^{m}\left(u_{i}, u_{h}\right)=\left(u_{i}, \varphi\right)-\frac{\lambda}{2} \frac{\partial \rho}{\partial c_{i}} \quad(i=1, \ldots, m) \tag{5.5}
\end{equation*}
$$

If the function $\rho\left(c_{1}, \ldots, c_{m}\right)$ satisfies conditions (3.2), then again, just as in Section 3, one can apply to this problem the method used in the L-problem of Krein.

Let us denote by U_{i} the vector with the projections (u_{i}, u_{k}), $k=1$, \ldots, m. In accordance with [11], the system (5.3) has a solution c_{1}, \ldots, c_{m} satisfying the inequality (5.4) if, and only if, the function $\lambda(m)$ defined by

$$
\begin{equation*}
\frac{1}{\lambda(m)}=\min \left\|\sum_{k=1}^{m} \gamma_{k} U_{k}\right\|, \quad \sum_{k=1}^{m} \gamma_{k}\left(u_{k}, \varphi\right)=1 \tag{5.6}
\end{equation*}
$$

satisfies the inequality $\lambda(m) \leqslant M$.
Here the norm $\|U\|$ is defined in the space generated by the vectors U_{i} as in a space which is adjoint to the space E_{m} of vectors $C\left(c_{1}, \ldots, c_{m}\right)$ with the norm $\rho\left(c_{1}, \ldots, c_{m}\right)$.

Let us note now that if the functions $u_{i}(t)$ form an orthonormal system on the interval $\left[t_{0}, T\right]$, i.e. they satisfy the condition $\left(u_{i}, u_{k}\right)=0$ when $i \neq k$ and $\left(u_{i}, u_{i}\right)=1$, then the problem under consideration can be solved quite simply. Indeed, in this case the system (5.3) yields $c_{k}=\left(u_{k}, \phi_{k}\right)(k=1, \ldots, m)$.

For an arbitrary system of coefficients b_{k} we have

$$
H^{\mathrm{a}}=\int_{i_{0}}^{T}\left(\sum_{i=1}^{m} b_{i} u_{i}(t)-\varphi(t)\right)^{2} d t=\sum_{i=1}^{m}\left(b_{i}-c_{i}\right)^{2}+\int_{i_{0}}^{T} \varphi^{2}(t) d t-\sum_{i=1}^{m} c_{i}{ }^{2}
$$

Suppose that the b_{k} satisfy the inequality (5.4). The difference

$$
\int_{i_{0}}^{T} \varphi^{2}(t) d t-\sum_{i=1}^{m} c_{i}^{2}
$$

does not depend on the shape of the region (5.4); it can be diminished only by increasing m. For a given m one can decrease H^{2} only by decreasing the quantity $h^{2}=\left(b_{1}-c_{1}\right)^{2}+\cdots+\left(h_{m}-c_{m}\right)^{2}$, which in the space of the parameters is equal to the distance from the point $C\left(c_{1}, \ldots, c_{m}\right)$ to the point $B\left(b_{1}, \ldots, b_{m}\right)$ lying in the region (5.4).

But this means that h^{2} will be a minimum when we choose for the point
$B\left(b_{1}, \ldots, b_{m}\right)$ the point in the region (5.4) that is nearest to C. (The author is indebted to S.B. Stechkin for this observation).

If, for example, $\rho\left(c_{1}, \ldots, c_{m}\right)=\sqrt{ }\left(c_{1}{ }^{2}+\ldots+c_{m}{ }^{2}\right)$, then it follows from the indicated considerations that

$$
\begin{array}{ll}
b_{i}=M \frac{c_{i}}{\sqrt{c_{2}^{2}+\ldots+c_{m}^{2}}}, & \text { if } c_{1}^{2}+\ldots+c_{m}^{2}>M^{2} \\
b_{i}=c_{i}, & \text { if } c_{1}^{2}+\ldots+c_{m}^{2} \leqslant M^{2}
\end{array}
$$

If, however, $\rho\left(c_{1}, \ldots, c_{m}\right)=\max \left|c_{i}\right|$ when $1 \leqslant i \leqslant m$, then

$$
b_{i}=M \operatorname{sign} c_{i} \text { when } \rho\left(c_{1}, \ldots, c_{m}\right)>M, \quad b_{i}=c_{i} \quad \text { when } \rho\left(c_{1}, \ldots, c_{m}\right) \leqslant M
$$

By developing further these considerations one can obtain a new method for solving problems in the general case of a non-orthonormalized system. It is known [8, p. 320] that an arbitrary system of linearly independent functions can be orthonormalized. Let us suppose that the process of orthonormalization yields the system of functions $\left\{v_{i}(t)\right\}$. Then the polynomial $c_{1} u_{1}(t)+\ldots+c_{n} u_{m}(t)$ will be transformed into the polynomial $b_{1} v_{1}(t)+\cdots+b_{n} v_{m}(t)$, whereby the coefficients c_{i} become linear functions of the coefficients b_{i}. Condition (5.4) takes on the form of a restriction on the coefficients b_{i}. Hereby, the region G, given by the inequality (5.4), is transformed linearly into a new region G_{1} in the space of the coefficients b_{i}. The problem is thus reduced, obviously, to finding within the region G_{1} the point nearest to the point with the coordinates equal to the Fourier coefficients.

In conclusion, let us remark that the above considerations are applicable to any problem in which it is necessary to find the best mean-square approximation under restrictions on the coefficients of the polynomial. Thus, returning to the problem solved in Section 1, one can render it more complicated and look for a solution of Equation (1.1) in the form of a mean-square approximation of the function $f(t)$ under a restriction on the initially given parameters c_{i}.

BIBL IOGRAPHY

1. Krasovskii, N.N., K teorii optimal' nogo regulirovaniia (Theory of optimal control). Avtomatika i telemekhanika Vol. 28, No. 11, 1957.
2. Krasovskii, N. N., 0 priblizhennom vychislenii optimal' nogo upravlenila priamym metodom (Approximate calculation of optimal control by the direct method). PMM Vol. 24, No. 2, 1960.
3. Kulikowski, R., Obliczanie liniowich ukladow impulsowych. Arch. elektrotechniki Vol. 3, No. 2, 1954.
4. Kulikowski, R., Optymalne sohematy zastepeze i modele liniowych ukladow dynamicznych. Arch. elektrotechniki Vol. 4, No. 1, 1955.
5. Barbashin, E.A., Ob otsenke srednekvadratichnogo znacheniia otklonenifa ot zadannoi traektorii (Estimating the mean-square deviation from an assigned trajectory). Avtomatika i telemekhanika Vol. 21, No. 7, 1960.
6. Barbashin, E. A., Ob otsenke maksimuma otkloneniia ot zadannoi traektorii (Estimating the maximum of the deviation from an assigned trajectory). Avtomatika i telemekhanika Vol. 21, No. 10, 1960.
7. Coddington, E. A. and Levinson, N. , Theory of Ordinary Differential Equations. (Russian translation) IL, 1958. (Original English edition published by McGraw-Hill, 1955).
8. Berezin, I.S. and Zhidkov, N. P., Metody vychislenii (Methods of Computation), Vol. 1. Fizmatgiz, 1959.
9. Natanson, N. N., Konstruktivnaia teoriia funktsii (Constructive Theory of Functions). GITTL, 1949.
10. Gantmakher, F.R., Teoriia matrits (Theory of Matrices). GITTL, 1953.
11. Akhiezer, Ia. and Krein, M., O nekotorykh voprosakh teorii momentov. Stat'ia "L-problema abstraktnom normirovannom prostranstve" On Some Questions in the Theory of Moments. Article "The L-problem in an abstract normed space"). GONTI, Khar' kov, 1938.
12. Kantorovich, L. V. and Akilov, G. P., Funktsional'nyi analiz v normirovannykh prostranstvakh (Functional Analysis in Normed Spaces). Fizmatgiz, 1959.
13. Kirillova, F. M., 0 korrektnosti postanovki odnoi zadachi optimal'nogo regulirovaniia (On the correctness of the statement of a problem of optimal control). Izv. VUZov, Matematika No. 4(5), 1958.
14. Malkin, I. G., Teoriia ustoichivosti dvizheniia (Theory of Stability of Motion). GITTL, 1952.
15. Boltianskii, V. G. Gamkrelidze, R. V. and Pontriagin, L. S., Teoriia optimal'nykh protsessov (Theory of optimal processes). Izv. Akad. Nauk SSSR, Ser. maten. 24, 1960.
