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methods for the selection of the input parameters of linear systems are 

given. The object of these methods is to insure the transition of the 
system from the given initial state to a new nearby state. 

1. Let us consider the nth-order linear differential equation 

L (X) = X(n) $ al (t) 0--1) + . . . +a,(t)z=clul(t)i-...fc,u,(t) (1.1) 

where a,(t), . . . . a,(t) are continuous functions of time for t > 0; 
u,(t), ..*, u,(t) are a given set of linearly independent functions; 

=I, **‘, cs are constant parameters which can be chosen within certain 
limits. 

Suppose that at t = 0 we are given the set of numbers xo, x0’; .*., 

xO (n- If and suppose that f(t) is a given function defined on 0 G t G T, 
O<TdbD. We state two problems: 

1) The problem is to find a set of parameters c i such that the solu- 
tion x(t) of IZquation (1.1) satisfying the conditions 

z (0) = %I, z’ (0) = X0’, . . . , &t-l) (0) = &p-l) 0*2) 

may also satisfy the condition 

x (tom = f (to)? I’ (Co) = I’ &), . * 9 * 1X;(=--1) (to) = p-1) (to) $3) 

when t = t, > 0. 

2) The second problem is to find a set of parameters ci such that the 
solution x(t) of Equation (1.1) which satisfies (1.3) may approximate 
the given function f(t) on the set to 4 t $; T. 
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If one solves these problems simultaneously, one is looking for piece- 
wise constant functions c;(t) which change their values when t = t0 and 
which guarantee the transition of the system at the time t,, into a new 

state with an ultimate approximate realization of the given process f(t). 
During the time 0 $ t G t, a transient process is taking place which be- 
gins at tu with a new set of parameters ci. This new set of parameters 
must approximate as much as possible the solution x(t) of Equation (1.1) 
to the given function f( t 1. 

In solving the first problem we shall endeavor to find the smallest t, 
for which the given boundary-value problem has a solution. While solving 

the first and second problems we shall remember also that in applied 
problems one cannot select the parameters ci arbitrarily, for they are 
restricted by the structural characteristics of the system under consider- 
ation. These circumstances put the first problem into the class of prob- 
lems on optimum control with respect to speed. Krasovskii 111 was the 
first to call attention to the possibility of applying Krein’s L-problem 
theory to the given class of problems. This approach is used in the pre- 
sent paper. We note that the search for the optimal control in the form 
of a trigonometric polynomial was carried out by Krasovskii in E2 I. 

‘Ihe second problem is a problem in the theory of approximations. It 
has been considered, in particular, by Kulinovskii [ 3,4 1. In the present 
article a different method of solution is used from that given in the 
indicated works. Following the ideas expressed in [ 5,6 I 5 one can avoid 
computational difficulties by replacing the problem on best approximation 
of the function f(t) by the problem of finding+such parameters ci for 
which the function f(t) satisfies EZquation (1.1) with the least error. 

Let +, 7), ..*, w,(t, 7) be a linearly independent system of solu- 
tions of Equation (1.1) satisfying the conditions 

dkwi (t, z) 

dt” I 
= 6i. k+l Isi, !i+l is Kronecker’ s symbol) (1.4) 

l--T 

The solution of Equation (1.1) which satisfies Equation (1.21 can be 
expressed in the form [ 7 1 

Let 

z(L) = 5 wk (t> O) x0 (k-1) + i Ci SW, (tp Z) Ui (T) dTT P-5) 
k=l i=l 0 

yi (t) = 5 w7l (t, q ui (z) dT {i = 1, . . . , m) 

0 

(1.6) 
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Lt is not difficult to select the functions Ui(r) in such a way that 

the m + n-functions 201( t, O), . . . , zo,(t, O), y,(t), . . . . y,(t) be linearly 

independent. 

For the purpose of justifying our 
digress from our main aim, and first 
and the initial values x,,, nOIi . , . , 
solution of EIquation (1.3) 

rz 

formulation of the problem, we 
attempt to select the parameters Ci 

x0 
(n- 1) in such a way that the 

m W-n 

where 

s(t) S 2 wk (t, 0) %o(~-‘) f z c@i (t) = 2 bizi (t) 
k=l i=l i=l 

ai = ~O(i-l) , z$)=wi(t,O) when I<i<n 

Ui = C&-n, zi (t) = Yi-n (t) when n< idrn 

(1.7) 

will be the best approximation to the given function f(t) on the interval 

IO, Tl. 

When one speaks of the best approximation in the space L,, that is, 

when one requires that the quantity 
T 

HZ = 
s 

(2 (5) - f (~))Z~~ 

0 

be a minimum, then it follows from the theory of mean-square approxima- 
tions I4,8 1 that the initial values and parameters can be found by means 
of the system 

Here 

x (zi, zk) b/t = (zit 1) (i = 1, . . . . m fn) 68) 

k=I 

T 

For’ the indicated choice of the b, we will have 

where the numerator and denominator 
corresponding systems of functions. 

are the Grammian determinants of the 

‘Ihe problem becomes considerably more co~licated,when one looks for 
the best approxi~t~on in the space C, i.e. if one requires a ~nirn~ 
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for the quantity 

k r= max j z (t) - f(t) i (0 < t d T) 

‘Ike theory of uniform or of Chebyshev approximations does not yield 
any methods which are as simple as the above-described procedure for 
finding the b,. 

Let us denote by x,(t) a solution of Equation (1.1) which satisfies 
the conditions 

Zg(h) (to) = ftrc) (t,) (k=O, 1,...,n-I) 

We have, obviously 

Since 

J: (t) - $1 (t) = -jj w, (t, to) (z”-‘) (to) - f’li-‘) (to)) 

k=l 

the solution of the problem can be carried out in two stages. At the 
first stage we shall attempt to eliminate the difference between the 
actual and the desired initial conditions of the system (i.e. we accom- 

plish the transient process). At the second stage, we select new values 
of the parameters; we attempt to diminish the difference between the 
actual x(t) and the desired f(t) processes. ‘Ibe indicated stages corre- 
spond exactly to the above-stated first and second problems. 

We call attention to the fact that the control clul(t) t . . . + enurn 
for which we are searching need not be expressible as an explicit func- 
tion in t. Indeed, the function clul -t . . . + c,u,(tI obviously satisfies 
some linear equation L,(u) = 0 of order m. The problem on the determina- 
tion of the parameters c j can be formulated in this case as the problem 
on the finding of the initial values for the solution of the indicated 
equation. 

2, Let 
ting, for 
variables 

us proceed with 
the time being, 
z = n - f(t) in 

L (2) = z(n) + a, (t) d--1) + , 

the solution of the first problem without put- 
any restrictions on Ci. Making the change of 
Equation (1. l), we obtain 

(2.i) 

. . + f&z (t) 2 = Cl% (t) + * - - 5 %% (t) - L (f (t)) 

Taking into consideration conditions (1.2) and Formulas (1.5) and 
(1.6)) one can write the solution of bation (2.1) in the form 



5=1 k=l 

When t = 0, this equation satisfies the condition 

G) (0) z x@(“l- f(k) (0) (k=O.I,ir.,n--l) 

Differentiating (2.21 R - I times, we obtain 

z&@ (t) = i C@(@ (t) - Pf@ (t) (k= 0, 1, . . ., (n-4)) 
t=1 

'ihe problem cansists of selecting such values of the parameters 
that for t = t, :, 0 the equation 

m 
2 C$,(k) (to) = dk) (to) (k = 0.1, *r., (n-l)) 

i=1 

may have a solution. 

Since the system (2.5) is inconsistent, we must find a solutiau 

(2.4) 

Ci 

(2.5) 

the method of feast squares E6, p_ 449 1 ) i. e. we must look for such a 

set of parameters ci that the quadratic 
form 

n-l nt -2 

F = -jj (2 qyi(“) - r(k)) 
k=O i=l 

(24 

in these parameters may have a minimum 
(here and in the sequel we omit the 
argument to). 

Next, let us consider the vectors 

Y&J& 7&l, . . . I yp-q (i = 1, f . . * m) I Fig. 1. 

Since they are 4imensional vectors, there exist among them p linearly 
independent vectors (here p 4 n, p < m). We shall denote these vectors 

by Y,, . . . , Y,,. By Q we shall denote the hyperplane generated by the 
given vectors. Obviously, all remaining vectors Y, lie in this hyper- 
plane and the quadratic form F is the square of’ the distance from the 
point A, whose radius vector is equal to R(r, P’> ff. * r(“- I)* to the 
pint B with radius vector 5’ = e,YI + _. a + cIYI lying in the plane Q 
(see Fig. 1). But then F must be a minimum if the vector S is the pro- 
jection of the vector R, or, which is the sume thing, the point B will 
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be the projection of the point A. Since the system of vectors Y,, . . . , YP 
is a basis for the subspace Q, we have 

s = c,Y, + , . . + cry, 

In accordance with [ 10, p. 204 1 , the parameters ci(l < i G p) are 
here determined by the system 

(Yi,Y,)c,+.*. + (Y&J cp = (Yi, R) (i = 1, . . . , p) P-7) 

Here, (Yi, Yk) stands for the inner product of the vectors Yi and Yk, 

Thus, the ci with i > p do not enter into the solution and they can be 
set equal to zero. 

lhe minimum H2 of the quadratic form F is equal in the given case to 

H2 = 
I‘(Yiu . . . , Y,, R) 

I'(Yl, . . . , Yp) GW 

where the numerator and denominator are the Gramnian determinants of the 
corresponding systems of vectors. Finally, we have the important relation 

(Yl> Yl) * * , (Yl, Yp) .yx 

(24 
i=l 

(R, I’,). . . (R, Yp) 0 

From Formulas (2.8) it follows that fi ‘= 0 if p = n and, hence 
m a n. In this case the number of the linearly independent vectors Yi is 
a maximum, and the vectors generate the entire n-dimensional space in 
which the vector R lies. 

A system of functions ui(t) is said to be essentially linearly inde- 
pendent on some set if the set of zeros of the function 

Cl% (t) + - - - + CmUm (t) when ~~~-f-...-j-c~~#~ 

is nowhere dense in this set. 

We prove the next lemma for later use. 

Lemnu. If the system of functions ui(t) (i = I, . . . , m; m > n) is 
essentially linearly independent on the interval IO, Tl, then the set 
of points t, for which the rank of the matrix 
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y1 yl’ . . . yp-1) 

yz yz’ . . . yp-1) 
. . . . . . . . . . 

%ll y,’ . . . y,(+‘) 

is less than n is a closed nowhere-dense set. 

(2.10) 

Indeed, let us assume that on the interval tl < t < t2 the rank of 

the matrix (2.10) is less than n. We construct the differential equation 

y1 yl’ . . . yp-1) 
n-1 

. . . . . . . . . . . . . 

%a-1 Yn_1' l 
(n-l), 

. .Y,-1 
= x bk (t) y(k) = 0 (2.11) 

k=O 

Y y' . . . y@-l) 

It is obvious that on the indicated interval all the m-functions yi(t) 
satisfy this (n - l)-order differential equation with continuous coeffi- 
cients bk( t). But since m 2 n, the function yi(t) must be linearly de- 
pendent. This means that there exist constants ai such that 

ais + . . . + G7l”#O, w1(t) + * * * +%nyTn@)-O 

on the given interval. Since L(yi(t)) = ui(t) (L is the operator defined 
by Equation (Ll)), we have elul( t) + . . . + a,u,(t) = 0 everywhere on 

[t,, tz 1. 

‘Ihe closure of the set under consideration follows from the fact that 
the complement of the set of points where the rank of the matrix (2.10) 
is equal to n is, obviously, an open set. 

We shall call the points t, where the rank of the matrix (2.10) is 
less than n critical points; at these points one cannot eliminate the 
error H by increasing the number of functions ui(t) to n (or higher) 
even in the absence of any restrictions on the parameters ci. We note 
that in concrete examples the critical points are distributed sparsely. 
From simple considerations it follows, for example, that if the func- 
tions ui(t) and the coefficients of Equation (1.1) are analytic, then 
the critical points are isolated. At the noncritical points, with m = n, 

we obtain the-exact solution of the 
meters ci in accordance with (2.7). 

3. Let us now consider the first 

first problem by selecting the para- 

problem when the parameters ci are 
assume that the parameters ci are subjected to restrictions. We shall 

connected by the inequality 
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The points of 
S = CIY1 + . . . + 
fill some region 
of the quadratic 

P(C1, . * *, h)\(M (3.1) 

the hyperplane Q with radius vectors of the form 

cnYn, where the ci are connected by condition (3.11, 
G. Two cases can arise. In the first case, the minimum 
form F is attained by the vector S with its end B in- 

side the region G. In this case the system (2.7) yields the complete 
solution of the problem. 

In the second case, the minimum form F is attained on the boundary 
(Fig. 11 of the region G; it is obviously equal to the square of the dis- 
tance from the point A to the point C on the boundary of the region G 
and nearest to A. Since A C 2 = CB 2 + A B 2, and since the component A B 
does not depend on the size and shape of the region G, the point C is 
also the nearest point of the region G from the point B. Thus, the error 
AC with which the problem is solved has, seemingly, two components CB 
and AB. Selecting a noncritical value t,, and taking m = n, one can 
eliminate the component AB . Hence, one needs only to find ways for de- 
creasing the length of the component CB. 

lhis last task represents the problem on a conditional extremum; but 
when m > n for the noncritical value to, one cannot deal directly with 
the extremum of the form F, for in this case the system of equations is 
a consistent set of simultaneous equations. Here, one may make use of 
Krein’s 111 1 method. 

Suppose m > n, and to is a noncritical value. We shall consider the 

vector space Rn generated by the tz-dimensional vectors Y’(y,“‘, . . . . 
y 9 (k = 0, 1, . ..) n - 1). Since t,, is noncritical, the vectors Yk 
a:e linearly independent, and the dimensionality of the space R, is n. 
Alongside the space R, we consider the space Em of the vectors 
C(c,, ..*, c-1. Suppose that in this space there is given a norm 
P(cj = p(c,,-... , cm), i.e. a function 

PTC, > 0, if C#O; p(d) = up(C), 

‘Ike space Em can be considered [ 12, 
functionals 4 acting in R according to 

nt 

satisfying the conditions 

P cc, + C2) < P (CA + P (Cd (3.2) 

p. 113 1 as a space of linear 
the rule 

Cp (X) = 2 CiZi = (Cy X) (X c R,) 
kl 

Hence, in R, as well as in the space Rm which is an adjoint to the E, 
space, the norm 11X 11 is defined by the rule 
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11 x II= max (C, X) under the condition p (C) = 1 

The system (2.5) can now be represented in the form 

(C, Yk) = Gk) (k=O, 1,.,.,n--I) (3.3) 

Lt. us determine the function h(t,, m) by means of the conditions 

From the basic result of C 11 1 it follows that the system (3.3) has a 
solution C(cl, . . . . c,) satisfying the condition p(cr, . . . , c,)< M if, 
and only if, A(t,, nr) c M. From the same work [ll, p. 177 1 it also 
follows that the vector y,,P + ylY1 + . . . + ya_ ,Y”- ’ will be a minimiz- 
ing vector of the problem (3.4) if, and only if, the vector C(cl, . . . , c,) 
satisfies the system (3.3) and also the conditions 

= ii ('0, m) (3.5) 

From these results it follows first of all that the function A( tO, ~11 

is a continuous function t, on the set of noncritical points. 

However, in contrast with the work of Kirillova 113 1, one may not 
assert that X(t,, tn) is a monotone function. 

Let us show that the function A(t,, m) is a nonincreasing function m. 

Indeed, suppose the minimizing elements of the problem (3.4) are 

y,“Yo (mo) + rloY1 (mo) + . . . + yn_?lr”” (mo) when m = mO 

Wrd r,‘Y* (&I + Tl’Yl (ml) + ‘ - . + ynL,Y”‘-’ (mx) ahen m = ml > m. (3.6) 

Obviously, we have 

II rJO ho) + rl’Y1@%> + . * * + Grl (mo> I/ > 

>llroeyo (mo) + Tl”Yl (mo> + ’ ’ * + rLr-1 @to> II (3.7) 

J3ut since the vector y,,‘Y”(so) + Y~‘Y’(I~ 1 +t- . . . + yn_ lYn- “(ino) is 

the projection of the vector y,‘Y%sI) + yl’Y ‘( ml) + 
we have 

*** + y,_,Y”-%sl) 

IPLY @I> + TI’yf (%I + * f ’ + Tl-rYn-l (ml) II>, 

> ii ~oOYO (~0) + 71°F @of + * ’ * + ~~~~~n-l(~o~ /j (3.8) 
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From relations (3.4) and the inequalities (3.7) and (3.8) we deduce 
that 

h C&J, mrJ> > h (Lo, m,) 

which proves our assertion. 

If the number t,, is a critical number, then the vectors Yk, k = 0, 1, 
. . . . (n = 1) will be linearly dependent. In this case it follows from 

(3.4) that h(t,, m) = 00. Hence, the funct ion X(t, m) will be a continuous 

function on the set of points where A(t, m) < M. It follows from this 

that the equation A(t, m) = M has a small est root t, which is not a 

critical number. This number to gives us the optimum noncritical time of 

the transient process. We call attention to the fact that t, f 0, for 

the number 0 is always a critical value. With the equation A(t, tn) = M 

one can also determine the minimum number m of the control parameters ci 
for which there exists a solution of our problem. 

d Let us consider some examples of concrete metrics in the space EIR. 
We consider first the Euclidean metric, i.e. we set 

P(",, .-a, c,) = J&+ . . .+ cm2 

In the adjoint space RI the norm of the vector X(x,, . . . , x,) is de- 

fined by an analogous formula 11 X I( = 4 (xl2 + . . . + xm2). 

E5y means of (3.4) we find first X(t,, m) from the relation 

1 
n-1 

a(to, = min when 2 Tkr@) (to) = 1 (4.1) 
i=l k=O k=o 

After that, one must find the smallest root t, of the equation 

Ut,, a) = M, and then the corresponding values ykP k = 0, 1, . . . , (n- 1) 
which yield the q inimnm (4.1). Since in the given case 

h (to, m) = v/cl2 + . . . + cm2 

it follows from (3.4) that 

I& the last equation will be valid when the numbers ci are pro- 
protional to the nunbers ygio + . . * + Yn- 1Yi (n- ‘I. Finally, we obtain 

Ci = A2 (to, m) (~oZJico) + 7192(l) + . . . + +(~-l?Jjc”-l)) (4.2) 
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Next, let us consider the case when the norm p(c,, . . . . c,> is de- 
fined by the formula 

P (Cl, * * * 2 cm)= max jcij 
l<i<;m 

In this case there is induced in R, a norm X(x,, . . . . x,) given by the 
formula 

We determine the function Xtt,, 

y1 Y1 + ..* + yn_rP-l 

n> and the minimizing vector yoYc + 

by means of the selatious 

1 
- = mins /~~&~h.)I, 

72-l 

h (to! m) 
2 ykr(k) = 1 

i=l k=O k=O 

From (3.4) it follows that the minimizing vector must satisfy the con- 

dition 

From this it follows that 
n-1 

ci = h (to, m) sign 2 ~,z&fk’) 

k=O 

li = 1, . . . ) m) 

Let us consider an example. Let the following equation be given: 

g = CI sin t + c2 cos t + CQ sin 2t + cd cos 2t (4.3) 

It is required to transfer the point x = 0, x’ = 0 on the straight 
line x = 1 into the point x = 1, x’ = 0 under the restriction that 

Cl 
2 2 

-I- c2 f c32 -I- Cd2 < 1. 

This means that in the given problem f(t) = 1, M = 1. We obviously 
have 

WI (t, z) = 1, Wl'(b z) = 0, wo(t, z)= t -T, 

We also have 

Yl = - sin t, yz==-l-cost. y3 = -$ sin2t, 

Yl’ = -cost, y2’= sin t, yd = - $ cos 2t, 

It is easily seen that the critical values of t 
points t = 2krr. ‘be system (2.5) has the follopring 

wz’ (t, z) = 1 

y4==$(l-cos2t) 

y4’ = + sin 2t 

correspond to the 
form in this case: 
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- qcost +czsint-.L. 
3 

c, cos 2t + + cg sin 2t = 0 

Since pfcl, . ..) cq) = \! (cl2 + c22 + cf2 + 12~~1, h(t, 4) = A(t) is 
given by the relation 

1 -- 
h2 (t) 

= min {(-rl sin t + yz cos t)” + (71 (I- cos t> + TZ sin t)2 + 

+ ($71 sin 2t + .$. rz cos 2t)’ + [$ yl(1 - co.7 2t) + f y2 sin 2t] “f 

under the condition that y1 = 1. It is not difficult to calculate that 
yz = - (8 sin t + sin 2t)/lO and 

1 - = 2 - 2 cos t + l/* (1 - cos 2t) - l/so (8 sin t + sin 2t)2 == Q, (t) 
A2 It) 

In order to have attainability it is necessary that A2(t1 G 1, or 
Q(t) A 1. This condition is fulfilled, for example, when t = n/2. The 
shortest time for the [transient I transfer process is found from the 
equation O(t) = 1, which we shall not solve here. Knowing y i, y 2 and X(t) 
we can easily find ci by Formula (4.2). 

5. let us proceed to the solution of the second problem. Taking into 
account the transformation z = x - f(t), introduced in Section 2, and 
Equation (2.11, let us formulate the second problem in the following way: 
the problem is to find such parameters ci that the solution z(t) of ba- 
tion (2.1) which satisfies the conditions .zk(tO) = 0 (& = 0, 1, * * . , 
n - 11 may approximate 2 = 0. 

How the approximation is to be carried out in the L, space, i.e. on 
the basis of mean-square deviations, was shown in Section 1. Here, 
following the ideas of [ 5,6 ] , we shall try to find ways of selecting 
the parameters ci which will diminish the maximum deviation of z(t) from 
zero. From (2.1) we obtain, in analogy with (1.5) 

r(t)=~~~~i.rJ(~~qui(t)--iy(r))dr (L (f W) = cp (Q) (5.1) 
to 

Making use of the E3uniakov-Schwarz inequality we obtain for tu G t G T 

Here 
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when E&ration (1.1) is an equation with constant coeffi- 

that in accordance with 16 1 

N = (1 w,2 (T, z) d”> ‘I* 
t* 

We select the parameters ci so that the integral 

will have, for a given m, the minimum value. In other words, we must find 
the best mean-square approximation of the function &t). We have already 
solved a similar problem in Section 1, and know that, for example, the 
ci must be found from the system of equations 

i (ui, uk) ck = (ui, q) 
k=l 

(i’= 1, . . . ( ml) (5.3) 

If the system of functions ui(t), i = 1, 2, . . . . is a complete system, 

then by taking m sufficiently large, one can make H*less than any given 
positive number. 

We note now that the proposed method of approximation will be most 
effective over large intervals of time if the quantity N in (5.2) is 
bounded as a function of T. This condition holds, for example, when 
zo,(t, r ) satisfies the condition 

I w,, (t, z) I-< Be-a (t-+) (a>09 B>O) 

which holds, in particular, in the case when the zero solution of the 
equation L(z) = 0 is stable according to the exponential law [ 14,~. 310 1 , 

Next, we shall consider the case when all the 
bounded by the inequality 

p(c,, . . ..cm)<M 

This gives rise to the problem of finding the 

coefficients ci are 

(5.4) 

best mean-square approxi- 
mation of the function +(t> under certain restrictions on the coeffi- 
cients of the polynomial clul(t) + . . . 
found by means of (5.3) d 

+ c,a,(t). If the coefficients ci 
o not satisfy condition (5.41, then the more 

natural method of finding the required set of coefficients consists of 
solving a problem of a conditional extremum. In this case, Lagrange’s 
method leads to the system 
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If the function p(cl, . . . . cm) satisfies conditions (3.21, then again, 
just as in Section 3, one can apply to this problem the method used in 

the L-problem of Krein. 

Let us denote by Iii the vector with the projections (ui, nk), k = 1, 

... , m. In accordance with [ll I, the system (5.3) has a solution 

x"ih) 

. ..) c satisfying the inequality (5.4) if, and only if, the function 

defin:d by 

(5.6) 
‘I,+l 1’ 

satisfies the inequality h(m) G M. 

k-1 

Here the norm (( II (1 is defined in the space 

U. as in a space which is adjoint to the space 

with the norm p(cl, . . . . c,). 

generated by the vectors 

Ea of vectors C(cl, . . . . c,) 

Let us note now that if the functions ui(t) form an orthonomnal system 
on the interval [t,, TI, i.e. they satisfy the condition (ui, u,l = 0 

when i f k and (ui, ui) = 1, then the problem under consideration can be 

solved quite simply. Indeed, in this case the system (5.3) yields 

Ck = (u,, $k) (k = 1, . . ., ml. 

For an arbitrary system of coefficients b, we have 

Suppose that the b, satisfy the inequality (5.4). The difference 

does not depend on the shape of the region (5.4); it can be diminished 

only by increasing m. For a given m one can decrease H'only by decreas- 

ing the quantity h* = (b, - cl)* + . . . + (b,- c,l*, which in the space 

of the parameters is equal to the distance from the point C(cl, . . . . c,) 
to the point B(b,, . . . . b,) lying in the region (5.4). 

But this means that h* will be a minimum when we choose for the point 
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B(b,, . . . * b,) the point in the region (5.4) that is nearest to C. ('Ihe 

author is indebted to S.B. Stechkin for this observation). 

If, for example, p(cl, . . . . c,) = d (cl2 + . . . + c,,,~), then it follows 

from the indicated considerations that 

If, however, p(cl, . . . . c,) = max \c;\ when IC i LIIL, then 

bi = M sign ci when p (cl, . . . , c,) > 111, bi = G when p (cl, . . . , cm) < M 

E$T developing further these considerations one can obtain a new method 

for solving problems in the general case of a non-orthonormalized system. 
It is known [8, p. 320 I that an arbitrary system of linearly independent 

functions can be orthonormalized. Let us suppose that the process of 

orthonormalization yields the system of functions {vi(t) 1. 'Ihen the poly- 

nomial clnl(t) f . . . + c,u,ft) will be transformed into the polynomidl 

bl?JIW f 0.. + baby, whereby the coefficients ci become linear func- 

tions of the coefficients bi. Condition (5.4) takes on the form of a 

restriction on the coefficients bi. Hereby, the region G, given by the 
inequality (5.41, is transformed linearly into a new region G, in the 

space of the coefficients bi. The problem is thus reduced, obviously, to 

finding within the region G, the point nearest to the point with the co- 

ordinates equal to the Fourier coefficients.. 

In conclusion, let us remark that the above considerations are applic- 

able to any problem in which it is necessary to find the best mean-square 

approximation under restrictions on the coefficients of the polynomial. 

Thus, returning to the problem solved in Section 1, one can render it 

more complicated and look for a solution of Equation (f. 1) in the form 

of a mean-square approximation of the fnnction f(t) under a restriction 

on the initially given parameters ci. 
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